Published in

Cambridge University Press, Annals of Glaciology, 1(37), p. 344-350

DOI: 10.3189/172756403781816068

Links

Tools

Export citation

Search in Google Scholar

Identifying isochrones in GPR profiles from DEP-based forward modeling

Journal article published in 2003 by Olaf Eisen ORCID, Frank Wilhelms, Uwe Nixdorf, Heinrich Miller
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIsochronic continuous horizons between 20 and 90 m depth in a ground-penetrating radar (GPR) profile, recorded in Dronning Maud Land, Antarctica, are identified by comparison of synthetic and measured single radar traces. The measured radar-gram is derived from a stacked GPR profile; the synthetic radargram is computed by convolution of the complex reflection coefficient profile, based on dielectric profiling (DEP) data of a 150 m ice core, with a depth-invariant wavelet. It reproduces prominent reflections of the measured radargram to a considerable degree. Analyzing matching peaks in both radargrams enables us to identify isochronic reflections and transfer individual volcanic-event datings to the GPR profile. Reflections are primarily caused by changes in permittivity; changes in conductivity are of minor importance. However, several peaks in permittivity andconductivity show a good correlation and indicate that some reflections are related to acidic layers. The results demonstrate the possibility of reproducing radargrams from ice-core property profiles, a necessary step for the interpretation of remotely sensed radar data and the general significance of connecting ice-core and radar data for correct interpretations. Problems related to forward modeling, data gaps, origin of permittivity peaks, and GPR profiles used for comparison, are discussed.