Published in

Oxford University Press, Bioinformatics, 5(29), p. 580-587, 2013

DOI: 10.1093/bioinformatics/btt005

Links

Tools

Export citation

Search in Google Scholar

Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure

Journal article published in 2013 by Nikolas S. Burkoff, Csilla Várnai ORCID, David L. Wild
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Motivation: The problem of ab initio protein folding is one of the most difficult in modern computational biology. The prediction of residue contacts within a protein provides a more tractable immediate step. Recently introduced maximum entropy-based correlated mutation measures (CMMs), such as direct information, have been successful in predicting residue contacts. However, most correlated mutation studies focus on proteins that have large good-quality multiple sequence alignments (MSA) because the power of correlated mutation analysis falls as the size of the MSA decreases. However, even with small autogenerated MSAs, maximum entropy-based CMMs contain information. To make use of this information, in this article, we focus not on general residue contacts but contacts between residues in β-sheets. The strong constraints and prior knowledge associated with β-contacts are ideally suited for prediction using a method that incorporates an often noisy CMM. Results: Using contrastive divergence, a statistical machine learning technique, we have calculated a maximum entropy-based CMM. We have integrated this measure with a new probabilistic model for β-contact prediction, which is used to predict both residue- and strand-level contacts. Using our model on a standard non-redundant dataset, we significantly outperform a 2D recurrent neural network architecture, achieving a 5% improvement in true positives at the 5% false-positive rate at the residue level. At the strand level, our approach is competitive with the state-of-the-art single methods achieving precision of 61.0% and recall of 55.4%, while not requiring residue solvent accessibility as an input.