Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review A, 5(76), 2007

DOI: 10.1103/physreva.76.053824

Links

Tools

Export citation

Search in Google Scholar

Processing distributed inputs in coupled excitable lasers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In many instances, networks of dynamical elements are subject to distributed input signals that enter the network through different nodes. In these cases, processing of the input signals may be mediated by coupling, in what constitutes an emerging property of the network. Here we study experimentally this effect in two mutually injected semiconductor lasers with optical feedback, operating in an excitable regime. The lasers are subject to different periodic input signals in their pump current, with distinct frequencies. Our results show that when the signals are harmonics of an absent fundamental, the laser array is able to process these signals and respond at the missing fundamental frequency. When the input frequencies are rigidly shifted from their harmonic values, the response frequency follows a simple law derived from a linear sum of the inputs, even though the array integrates the electrical inputs after having transduced them optically. The results are reproduced numerically with a dynamical model of the laser array. ; Peer Reviewed ; Postprint (published version)