Published in

Springer Verlag, Coral Reefs, 1(31), p. 247-251

DOI: 10.1007/s00338-011-0840-5

Links

Tools

Export citation

Search in Google Scholar

Seasonal variation in the functional response of a coral-reef piscivore alters the inverse density-dependent mortality of its prey

Journal article published in 2011 by Ar R. Harborne ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Density-dependent processes are critical for regulating species’ populations, and piscivory of coral-reef fishes is frequently density dependent. However, the mechanism driving this density-dependent mortality is poorly understood, but may be caused by changes in a predator’s feeding rate at different prey densities (its functional response). An aquarium experiment replicated in winter and summer examined the functional response after 22 and 47 h of Cephalopholis cruentata feeding on Halichoeres pictus. With the exception of summer data after 47 h (density-independent mortality), mortality was inversely density dependent across all prey densities and increased with higher summer temperatures. The absence of an asymptotic pattern of inverse density-dependent mortality was caused by type II (summer) or dome-shaped type IV (winter) functional responses, with the benefits of schooling likely to cause the low mortality rates at higher prey densities. Predators’ functional responses may underlie the inverse density-dependent mortality reported in field studies of aggregating fishes.