Published in

Elsevier, Journal of Chromatography A, 1-2(1075), p. 167-175

DOI: 10.1016/j.chroma.2005.03.126

Links

Tools

Export citation

Search in Google Scholar

Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith

Journal article published in 2005 by Edel Sugrue, Pn Nesterenko, Brett Paull ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 0.46 cm x 10.0 cm silica monolith column was modified through the in situ covalent attachment of lysine (2,6-diaminohexanoic acid) groups. Due to the zwitterionic nature of the resultant stationary phase, the modified monolithic column contained both cation and anion exchange capacity. In the case of cation exchange, the capacity was found to be relatively low at between 5 and 6.5 micromoles Me2+ per column. However, as expected, the lysine monolith exhibited a higher anion exchange capacity at 12-13 micromoles A- per column (at pH 3.0), which was found to be dependent upon column pH, due to the dissociation of the weak acid carboxylic acid groups. High-performance separations of transition metal cations and inorganic anions were achieved using the modified monolith, with the effects of eluent concentration, pH and flow rate evaluated. Using elevated flow rates of up to 5 mL/min the separation of nitrite, bromate, bromide, nitrate, iodide and thiocyanate was possible in approximately 100 s with peak efficiencies of between 50 and 100,000 N/m and retention time %RSD of under 0.3%.