Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 3(80), 2009

DOI: 10.1103/physrevb.80.035421

Links

Tools

Export citation

Search in Google Scholar

Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

Journal article published in 2009 by Andriy V. Kityk, Klaus Knorr, Patrick Huber ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization. ; Comment: 7 pages, 5 figures