Published in

American Chemical Society, Environmental Science and Technology, 2(42), p. 629-634, 2007

DOI: 10.1021/es071720+

Links

Tools

Export citation

Search in Google Scholar

Hydrogen production with a microbial biocathode

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper, for the first time, describes the development of a microbial biocathode for hydrogen production that is based on a naturally selected mixed culture of electrochemically active micro-organisms. This is achieved through a three-phase biocathode startup procedure that effectively turned an acetate- and hydrogen-oxidizing bioanode into a hydrogen-producing biocathode by reversing the polarity of the electrode. The microbial biocathode that was obtained in this way had a current density of about -1.2 A/Nm2 at a potential of -0.7 V. This was 3.6 times higher than that of a control electrode (-0.3 A/m2). Furthermore, the microbial biocathode produced about 0.63 m3 H2/m3 cathode liquid volume/day at a cathodic hydrogen efficiency of 49% during hydrogen yield tests, whereas the control electrode produced 0.08 m3 H2/m3 cathode liquid volume/day at a cathodic hydrogen efficiency of 25%. The effluent of the biocathode chamber could be used to inoculate another electrochemical cell that subsequently also developed an identical hydrogen-producing biocathode (-1.1 A/m2 at a potential of -0.7 V). Scanning electron micrographs of both microbial biocathodes showed a well-developed biofilm on the electrode surface.