Published in

Springer (part of Springer Nature), Environmental Monitoring and Assessment, 1(187)

DOI: 10.1007/s10661-014-4089-7

Links

Tools

Export citation

Search in Google Scholar

Delineating optimal settlement areas of juvenile reef fish in Ngederrak Reef, Koror state, Republic of Palau

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Establishing the effectiveness of habitat features to act as surrogate measures of diversity and abundance of juvenile reef fish provides information that is critical to coral reef management. When accurately set on a broader spatial context, microhabitat information becomes more meaningful and its management application becomes more explicit. The goal of the study is to identify coral reef areas potentially important to juvenile fishes in Ngederrak Reef, Republic of Palau, across different spatial scales. To achieve this, the study requires the accomplishment of the following tasks: (1) structurally differentiate the general microhabitat types using acoustics; (2) quantify microhabitat association with juvenile reef fish community structure; and (3) conduct spatial analysis of the reef-wide data and locate areas optimal for juvenile reef fish settlement. The results strongly suggest the importance of branching structures in determining species count and abundance of juvenile reef fish at the outer reef slope of Ngederrak Reef. In the acoustic map, the accurate delineation of these features allowed us to identify reef areas with the highest potential to harbor a rich aggregation of juvenile reef fish. Using a developed spatial analysis tool that ranks pixel groups based on user-defined parameters, the reef area near the Western channel of Ngederrak is predicted to have the most robust aggregation of juvenile reef fish. The results have important implications not only in management, but also in modeling the impacts of habitat loss on reef fish community. At least for Ngederrak Reef, the results advanced the utility of acoustic systems in predicting spatial distribution of juvenile fish.