Published in

Elsevier, Journal of Biological Chemistry, 13(279), p. 12551-12559, 2004

DOI: 10.1074/jbc.m313365200

Links

Tools

Export citation

Search in Google Scholar

InsP3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nitric oxide (NO)-mediated relaxation of colonic smooth muscle is crucial for the maintenance of human gut function. The molecular mechanisms of NO-dependent smooth muscle relaxation involve cyclic GMP-mediated inhibition of store-dependent calcium signaling. Recently, IRAG (inositol 1,4,5-trisphophate receptor-associated cGMP kinase substrate) has been characterized as a novel target molecule of cGMP-dependent protein kinase (cGKI) mediating NO-/cGMP-dependent inhibition of inositol 1,4,5-trisphosphate (InsP(3))-dependent calcium release in transfected COS cells. The aim of the present study was to characterize IRAG expression and its functional role in NO-dependent signaling in human colonic smooth muscle. Reverse transcriptase-PCR revealed IRAG mRNA expression in human colon, rectum, and cultured colonic smooth muscle cells. In cultured human colonic smooth muscle cells, bradykinin (BK) elicited InsP(3)-dependent calcium transients that were repeatable and independent of extracellular calcium. The NO donor sodium nitroprusside and the specific cGK activator 8-(4-chlorophenylthio)guanosine-3',5'-cyclic-monophosphate (8-pCPT-cGMP) significantly inhibited BK-induced increase in intracellular calcium. Cells transfected with antisense oligonucleotides raised against IRAG (IRAG-AS) showed strongly decreased IRAG protein expression. In these cells, sodium nitroprusside and 8-pCPT-cGMP both failed to modulate BK-induced calcium transients. Thus, endogenous IRAG appears to be essentially involved in the NO/cGK-dependent inhibition of InsP(3)-dependent Ca(2+)-signaling in colonic smooth muscle.