Published in

American Physical Society, Physical Review Letters, 19(110), 2013

DOI: 10.1103/physrevlett.110.190501

Links

Tools

Export citation

Search in Google Scholar

Experimental Realization of Nonadiabatic Holonomic Quantum Computation

Journal article published in 2013 by Guanru Feng, Guofu Xu, Guilu Long ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Due to its geometric nature, holonomic quantum computation is fault-tolerant against certain types of control errors. Although proposed more than a decade ago, the experimental realization of holonomic quantum computation is still an open challenge. In this Letter, we report the first experimental demonstration of nonadiabatic holonomic quantum computation in liquid NMR quantum information processors. Two non-commuting holonomic single-qubit gates, rotations about x-axis and about z-axis, and the two-qubit holonomic control-NOT gate are realized with high fidelity by evolving the work qubits and an ancillary qubit nonadiabatically. The successful realization of these universal elementary gates in nonadiabatic quantum computing demonstrates the experimental feasibility and the fascinating feature of this fast and resilient quantum computing paradigm. ; Comment: 5 pages and 5 figures. New experiments added. Accepted for publication in PRL