Published in

Elsevier, Journal of Virological Methods, (206), p. 105-114

DOI: 10.1016/j.jviromet.2014.06.003

Links

Tools

Export citation

Search in Google Scholar

Herpesvirus delivery to the murine respiratory tract

Journal article published in 2014 by Cindy S. E. Tan, Bruno Frederico ORCID, Philip G. Stevenson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herpesvirus transmission is sporadic, and infection may be asymptomatic or present only with secondary lesions after dissemination. Consequently host entry remains ill-understood. Experimental infections can be informative, but depend on inoculations that are inherently artificial and so need validation. Mice are a widely used experimental host. Alert mice inhale readily small (5. μl) liquid volumes, and Indian ink, luciferase or radiolabel delivered thus distributed to the nasopharynx and oropharynx. Murid Herpesvirus-4 or Herpes simplex virus type 1 delivered thus infected only the nose, arguing that host entry is nasal rather than oral. Marker or virus delivery to the lung depended on general anesthesia and a large inoculum volume (30. μl), and so needs further validation of physiological relevance. While lungs could be infected at lower doses than the upper respiratory tract, tracking experiments showed that nasal inocula pass mostly into the oropharynx, even when restricted to 1. μl. Thus, the relative inefficiency of experimental upper respiratory tract infection was attributable to limited liquid retention in this site. Nonetheless low volume intranasal delivery to alert mice provides a convenient way to model experimentally an apparently natural mode of herpesvirus host entry.