Published in

American Institute of Physics, AIP Advances, 12(4), p. 124601, 2014

DOI: 10.1063/1.4902171

Links

Tools

Export citation

Search in Google Scholar

Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al. ; We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of |g o, OM | = 1.8 MHz (|g o, OM |/2π = 0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high g o, OM values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage. ; This work was supported by the EU through the FP7 project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392). D.N-U and J.G-B acknowledge support in the form of postdoctoral fellowships from the Catalan (Beatriu de Pinòs) and the Spanish (Juan de la Cierva) governments, respectively. ; Peer Reviewed