Published in

Geological Society of America, Geology, 11(39), p. 1003-1006

DOI: 10.1130/g32205.1

Links

Tools

Export citation

Search in Google Scholar

The fluorine link between a supergiant ore deposit and a silicic large igneous province

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Olympic Dam is a supergiant Fe oxide Cu-U-Au-Ag ore deposit (similar to 9 x 10(9) t) that is also enriched in rare earth elements (REEs) and fluorine (F). The immediate host to the ore is hydrothermal breccia within granite and volcanic rocks of a Mesoproterozoic silicic large igneous province. Analyses of melt inclusions in quartz phenocrysts in rhyolite show that the silicic magmas of this province were unusually rich in F (up to 1.3 wt%). Fluorite and other F-rich minerals that crystallized from these magmas provided a gigantic reservoir of F. As a result, the Olympic Dam ore-forming fluid was F-rich and had exceptional capacity to transport diverse elements. Further, we infer that hydrofluoric acid, the most corrosive acid known, contributed to hydrothermal breccia formation by dissolution that in turn increased permeability and accelerated the rate of fluid-rock interaction. It is no accident that the world's largest hydrothermal ore deposit occurs in an F-rich silicic large igneous province.