Published in

Microbiology Society, Microbiology, 3(157), p. 890-898, 2011

DOI: 10.1099/mic.0.045187-0

Links

Tools

Export citation

Search in Google Scholar

Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus methylomirabilis oxyfera'

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The anaerobic nitrite-reducing methanotroph ‘CandidatusMethylomirabilis oxyfera’ (‘Ca.M. oxyfera’) produces oxygen from nitrite by a novel pathway. The major part of the O2is used for methane activation and oxidation, which proceeds by the route well known for aerobic methanotrophs. Residual oxygen may serve other purposes, such as respiration. We have found that the genome of ‘Ca.M. oxyfera’ harbours four sets of genes encoding terminal respiratory oxidases: two cytochromecoxidases, a third putativebo-type ubiquinol oxidase, and a cyanide-insensitive alternative oxidase. Illumina sequencing of reverse-transcribed total community RNA and quantitative real-time RT-PCR showed that all four sets of genes were transcribed, albeit at low levels. Oxygen-uptake and inhibition experiments, UV–visible absorption spectral characteristics and EPR spectroscopy of solubilized membranes showed that only one of the four oxidases is functionally produced by ‘Ca.M. oxyfera’, notably the membrane-boundbo-type terminal oxidase. These findings open a new role for terminal respiratory oxidases in anaerobic systems, and are an additional indication of the flexibility of terminal oxidases, of which the distribution among anaerobic micro-organisms may be largely underestimated.