Published in

Nature Research, Nature Communications, 1(4), 2013

DOI: 10.1038/ncomms3687

Links

Tools

Export citation

Search in Google Scholar

Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada

Journal article published in 2013 by Wei Chen, Vs Kamenetsky ORCID, Antonio Simonetti
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Earth's sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic carbonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids. Here we report a detailed chemical investigation of melt inclusions associated with intrusive (plutonic) calcite-rich carbonatites from the ~120 Ma carbonatite complex of Oka (Canada). Melt inclusions are hosted by magnetite (Fe3O4), which crystallizes through a significant period of carbonatite melt solidification. Our results indicate mineral assemblages within the melt inclusions that are consistent with those documented in natrocarbonatite lavas. We propose therefore that derivation of alkali-enriched parental carbonatite melts has been more prevalent than that preserved in the geological record.