Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Behavioral Ecology, 6(18), p. 1123-1131, 2007

DOI: 10.1093/beheco/arm088

Links

Tools

Export citation

Search in Google Scholar

Iridescent structurally based coloration of eyespots correlates with mating success in the peacock

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

9 pages ; International audience ; Gaudy plumage coloration is a widespread ornamental trait in birds and thought to be sexually selected. Although much attention has been devoted to structural coloration reflecting in UV, the signaling function of structural colors lacking UV reflectance and those that exhibit iridescence coloration are poorly documented. The train of the peacock (Pavo cristatus), a classical example of a sexually selected trait, is composed of iridescent structurally colored eyespots not reflecting in UV. Until today, the role played by the structural color of the eyespots in female mate choice has never been investigated using spectrometry. We measured eyespot coloration from a stationary angle (static coloration) and the change in coloration resulting from different angles (iridescent coloration). We assessed coloration with reflectance spectrometry, and we analyzed reflectance spectra using 2 methods. First, we extracted the reflectance spectra shape descriptors hue, brightness, and chroma. Second, we computed color and brightness contrasts signaled by eyespot feathers, taking peafowl color visual sensitivity into account. Iridescence was estimated by the maximal change for all parameters. Brightness was correlated with male mating success. The maximal change in color contrast was correlated with both the frequency of male visitation by females and male mating success. These results suggest that peahens can use both static and dynamic (i.e., iridescent) aspects of plumage structural coloration as signals to detect and choose their mates.