Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Annals of Operations Research, 1(218), p. 129-145

DOI: 10.1007/s10479-012-1140-3

Links

Tools

Export citation

Search in Google Scholar

Adaptive selection of heuristics for improving exam timetables

Journal article published in 2012 by Edmund K. Burke, Rong Qu ORCID, Amr Soghier
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a hyper-heuristic approach which hybridises low-level heuristic moves to improve timetables. Exams which cause a soft-constraint violation in the timetable are ordered and rescheduled to produce a better timetable. It is observed that both the order in which exams are rescheduled and the heuristic moves used to reschedule the exams and improve the timetable affect the quality of the solution produced. After testing different combinations in a hybrid hyper-heuristic approach, the Kempe chain move heuristic and time-slot swapping heuristic proved to be the best heuristic moves to use in a hybridisation. Similarly, it was shown that ordering the exams using Saturation Degree and breaking any ties using Largest Weighted Degree produce the best results. Based on these observations, a methodology is developed to adaptively hybridise the Kempe chain move and timeslot swapping heuristics in two stages. In the first stage, random heuristic sequences are generated and automatically analysed. The heuristics repeated in the best sequences are fixed while the rest are kept empty. In the second stage, sequences are generated by randomly assigning heuristics to the empty positions in an attempt to find the best heuristic sequence. Finally, the generated sequences are applied to the problem. The approach is tested on the Toronto benchmark and the exam timetabling track of the second International Timetabling Competition, to evaluate its generality. The hyper-heuristic with low-level improvement heuristics approach was found to generalise well over the two different datasets and performed comparably to the state of the art approaches.