Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physiological Measurement, 8(32), p. 1315-1326, 2011

DOI: 10.1088/0967-3334/32/8/020

Links

Tools

Export citation

Search in Google Scholar

The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Portable tensiomyography (TMG) and myotonometry (MMT) devices have been developed to measure mechanical and contractile properties of skeletal muscle. The aim of this study was to explore the sensitivity of the aforementioned techniques in detecting a change in passive mechanical properties of the biceps femoris (BF) muscle as a result of change in knee joint angle (i.e. muscle length). BF responses were assessed in 16 young participants (23.4 ± 4.9 years), at three knee joint angles (0°, 45° and 90°), for maximal isometric torque (MIT) along with myo-electrical activity. Contractile and mechanical properties were measured in a relaxed state. Inter-day reliability of the TMG and MMT was also assessed. MIT changed significantly (p < 0.01) across the three angles, so did stiffness and other parameters measured with MMT (p < 0.01). Conversely, TMG could detect changes only at two knee angles (0° and 45°, p < 0.01), when there is enough tension in the muscle. Reliability was overall insufficient for TMG whilst absolute reliability was excellent (coefficient of variation < 5%) for MMT. The ability of MMT more than TMG to detect an inherent change in stiffness can be conceivably exploited in a number of clinical/therapeutic applications that have to do with unnatural changes in passive muscle stiffness.