Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Twin Research and Human Genetics, 4(9), p. 523-530, 2006

DOI: 10.1375/twin.9.4.523

Cambridge University Press, Twin Research and Human Genetics, 4(9), p. 523-530

DOI: 10.1375/183242706778024964

Links

Tools

Export citation

Search in Google Scholar

Subtypes of Illicit Drug Users: A Latent Class Analysis of Data From an Australian Twin Sample

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThis article applies methods of latent class analysis (LCA) to data on lifetime illicit drug use in order to determine whether qualitatively distinct classes of illicit drug users can be identified. Self-report data on lifetime illicit drug use (cannabis, stimulants, hallucinogens, sedatives, inhalants, cocaine, opioids and solvents) collected from a sample of 6265 Australian twins (average age 30 years) were analyzed using LCA. Rates of childhood sexual and physical abuse, lifetime alcohol and tobacco dependence, symptoms of illicit drug abuse/dependence and psychiatric comorbidity were compared across classes using multinomial logistic regression. LCA identified a 5-class model: Class 1 (68.5%) had low risks of the use of all drugs except cannabis; Class 2 (17.8%) had moderate risks of the use of all drugs; Class 3 (6.6%) had high rates of cocaine, other stimulant and hallucinogen use but lower risks for the use of sedatives or opioids. Conversely, Class 4 (3.0%) had relatively low risks of cocaine, other stimulant or hallucinogen use but high rates of sedative and opioid use. Finally, Class 5 (4.2%) had uniformly high probabilities for the use of all drugs. Rates of psychiatric comorbidity were highest in the polydrug class although the sedative/opioid class had elevated rates of depression/suicidal behaviors and exposure to childhood abuse. Aggregation of population-level data may obscure important subgroup differences in patterns of illicit drug use and psychiatric comorbidity. Further exploration of a ‘self-medicating’ subgroup is needed.