Published in

Wiley, Immunology & Cell Biology, 5(77), p. 451-459

DOI: 10.1046/j.1440-1711.1999.00859.x

Links

Tools

Export citation

Search in Google Scholar

Dendritic cell immunotherapy for cancer: Application to low-grade lymphoma and multiple myeloma

Journal article published in 1999 by Dnj N. J. Hart, Gr R. Hill ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The confirmation that most cancers express one or more molecular changes, which may act as tumour-associated antigens (TAA), combined with the knowledge that T lymphocytes recognize even single amino acid differences in MHC presented peptides has stimulated renewed clinical interest in immunotherapeutic strategies. Dendritic cells (DC) are now recognized as specialist antigen-presenting cells, which initiate, direct and regulate immune responses. Recent data suggest that DC are not recruited into, or activated by, cancers and that other abnormalities in DC function are associated with malignancy, including multiple myeloma. This provides a rationale for designing immunotherapeutic strategies, which exploit DC as nature's adjuvant either in vivo or in vitro. Low-grade lymphoma and multiple myeloma are slowly progressive malignancies, which generally express a unique immunoglobulin idiotype as a potential TAA. Data from animal models and clinical studies suggest that DC-based immunotherapy strategies, applied when the patient has minimal residual disease, may improve the long-term prognosis in these diseases.