Dissemin is shutting down on January 1st, 2025

Published in

Acoustical Society of America, The Journal of the Acoustical Society of America, 2(108), p. 696

DOI: 10.1121/1.429602

Links

Tools

Export citation

Search in Google Scholar

Pitch matches between unresolved complex tones differing by a single interpulse interval.

Journal article published in 2000 by Christopher J. Plack ORCID, White L. Plack Cj, Louise J. White
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The experiment compared the pitches of complex tones consisting of unresolved harmonics. The fundamental frequency (F0) of the tones was 250 Hz and the harmonics were bandpass filtered between 5500 and 7500 Hz. Two 20-ms complex-tone bursts were presented, separated by a brief gap. The gap was an integer number of periods of the waveform: 0, 4, or 8 ms. The envelope phase of the second tone burst was shifted, such that the interpulse interval (IPI) across the gap was reduced or increased by 0.25 or 0.75 periods (1 or 3 ms). A "no shift" control was also included, where the IPI was held at an integer number of periods. Pitch matches were obtained by varying the F0 of a comparison tone with the same temporal parameters as the standard but without the shift. Relative to the no-shift control, the variations in IPI produced substantial pitch shifts when there was no gap between the bursts, but little effect was seen for gaps of 4 or 8 ms. However, for some conditions with the same IPI in the shifted interval, an increase in the IPI of the comparison interval from 4 to 8 ms (gap increased from 0 to 4 ms) changed the pitch match. The presence of a pitch shift suggests that the pitch mechanism is integrating information across the two tone bursts. It is argued that the results are consistent with a pitch mechanism employing a long integration time for continuous stimuli that is reset in response to temporal discontinuities. For a 250-Hz F0, an 8-ms IPI may be sufficient for resetting. Pitch models based on a spectral analysis of the simulated neural spike train, on an autocorrelation of the spike train, and on the mean rate of pitch pulses, all failed to account for the observed pitch matches.