Published in

American Institute of Physics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 3(11), p. 705-714, 2001

DOI: 10.1063/1.1395623

Links

Tools

Export citation

Search in Google Scholar

Brownian ratchets and Parrondo's games

Journal article published in 2001 by Gregory P. Harmer, Derek Abbott, Peter G. Taylor, Juan M. R. Parrondo ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Parrondo's games present an apparently paradoxical situation where individually losing games can be combined to win. In this article we analyze the case of two coin tossing games. Game B is played with two biased coins and has state-dependent rules based on the player's current capital. Game B can exhibit detailed balance or even negative drift (i.e., loss), depending on the chosen parameters. Game A is played with a single biased coin that produces a loss or negative drift in capital. However, a winning expectation is achieved by randomly mixing A and B. One possible interpretation pictures game A as a source of "noise" that is rectified by game B to produce overall positive drift-as in a Brownian ratchet. Game B has a state-dependent rule that favors a losing coin, but when this state dependence is broken up by the noise introduced by game A, a winning coin is favored. In this article we find the parameter space in which the paradoxical effect occurs and carry out a winning rate analysis. The significance of Parrondo's games is that they are physically motivated and were originally derived by considering a Brownian ratchet-the combination of the games can be therefore considered as a discrete-time Brownian ratchet. We postulate the use of games of this type as a toy model for a number of physical and biological processes and raise a number of open questions for future research. (c) 2001 American Institute of Physics. ; Gregory P. Harmer, Derek Abbott, Peter G. Taylor, and Juan M. R. Parrondo