Published in

Elsevier, Journal of Allergy and Clinical Immunology, 6(121), p. 1400-1406.e4

DOI: 10.1016/j.jaci.2008.03.003

Links

Tools

Export citation

Search in Google Scholar

The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis: implications for airway remodeling in asthma.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: A disintegrin and metalloprotease (ADAM)-33 is a susceptibility gene for asthma and chronic obstructive pulmonary disease whose function remains unknown. OBJECTIVE: Because asthmatic bronchoalveolar lavage fluid contains high levels of soluble ADAM33 (sADAM33), which includes the catalytic domain, we postulated that its release from cell membranes might play functional roles in airway remodeling by promoting angiogenesis. METHODS: The proangiogenic activity of the highly purified catalytic domain of ADAM33 or a catalytically inactive mutant was studied in vitro (Matrigel assay), ex vivo (human embryonic/fetal lung explants) and in vivo (chorioallantoic membrane assay). The regulation of sADAM33 release from cells overexpressing full-length ADAM33 and its biological activity were characterized. RESULTS: We show that the purified catalytic domain of ADAM33, but not its inactive mutant, causes rapid induction of endothelial cell differentiation in vitro, and neovascularization ex vivo and in vivo. We also show that TGF-beta(2) enhances sADAM33 release from cells overexpressing full-length ADAM33 and that this truncated form is biologically active. CONCLUSION: The discovery that sADAM33 promotes angiogenesis defines it as a tissue remodeling gene with potential to affect airflow obstruction and lung function independently of inflammation. As TGF-beta(2) enhances sADAM33 release, environmental factors that cause epithelial damage may synergize with ADAM33 in asthma pathogenesis, resulting in a disease-related gain of function. This highlights the potential for interplay between genetic and environmental factors in this complex disease.