Published in

American Geophysical Union, Geophysical Research Letters, 11(36), 2009

DOI: 10.1029/2009gl037817

Links

Tools

Export citation

Search in Google Scholar

Low latitude 2-day planetary wave impact on austral polar mesopause temperatures: revealed by a January diminution in PMSE above Davis, Antarctica

Journal article published in 2009 by Ray J. Morris, Andrew R. Klekociuk ORCID, David A. Holdsworth
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

[1] A new characteristic of the austral summer polar mesopause as revealed by ground-based radar and satellite temperature measurements is reported, that is linked to inter-annual variability of the low-latitude easterly wind jet. Four consecutive seasons of polar mesosphere summer echoes (PMSE) and mesosphere temperature observations above Davis, Antarctica (68.6°S) show a mid-January diminution in PMSE occurrence rate that coincides with a minor mesopause warming of several degrees. Spectral analyses of PMSE, Aura Microwave Limb Sounder (MLS) temperatures and radar meridional winds show the presence of ∼4–5-day planetary waves (PWs) throughout the austral summer in the polar upper mesosphere together with enhanced ∼2-day PW activity from mid-January to mid-February. Analysis of MLS temperatures show that the ∼2-day PWs have zonal wavenumbers (S) with both westward (S = −2, −3) and eastward (S = +2, +3) components. Although displaying some inter-annual variation in the peak onset time, the mid-January mesopause warming coincides with a weakening of the equatorward meridional wind above Davis and enhancement of low-latitude 2-day PW activity. ; Ray J. Morris, Andrew R. Klekociuk, and David A. Holdsworth