Published in

American Chemical Society, Journal of Organic Chemistry, 1(77), p. 490-500, 2011

DOI: 10.1021/jo202077v

Links

Tools

Export citation

Search in Google Scholar

Fluorescent Acridine-Based Receptors for H2PO4–

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two new pseudopeptidic molecules (one macrocyclic and one open chain) containing an acridine unit have been prepared. The fluorescence response of these receptors to a series of acids was measured in CHCl(3). Receptors are selective to H(2)PO(4)(-) versus HSO(4)(-), and an even higher selectivity is found over other anions such as Cl(-), Br(-), CH(3)COO(-), and CF(3)COO(-). We show that the macrocyclic receptor is more selective for H(2)PO(4)(-) than the related open chain receptor. The supramolecular interactions of triprotonated receptors with different anions have been modeled in silico and have been studied by different experimental techniques. Optimized geometries obtained by computational calculations agree well with experimental data, in particular fluorescence experiments, suggesting that the selective supramolecular interaction takes places through coordination of the anions to the triprotonated form of the receptor.