Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Acta Biomaterialia, 10(10), p. 4314-4322

DOI: 10.1016/j.actbio.2014.06.009

Links

Tools

Export citation

Search in Google Scholar

Bioinspired superamphiphobic surfaces as a tool for polymer-and solvent-independent preparation of drug-loaded spherical particles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Superamphiphobic surfaces were evaluated as a tool to prepare spherical particles from polymers and solvents of very diverse nature, under mild conditions and with 100% drug encapsulation yield. Different from bioinspired superhydrophobic surfaces suitable only for aqueous dispersions, the superamphiphobic platforms allowed the formation of spherical droplets when solvents of any polarity were deposited onto them. Spherical poly(d,l-lactide-co-glycolide) (PLGA) particles were synthesized by placing drops of PLGA/ciprofloxacin suspensions in dioxane on a superamphiphobic surface followed by solvent evaporation. The particles prepared covering a wide range of PLGA/ciprofloxacin weight ratios delivered a 20% dose in the first 24h and then sustained the release of the remaining drug for more than 1month. The particles, both freshly prepared and after being 26days in the release medium, showed efficiency against different types of microorganisms. The developed polymer- and solvent-independent approach could be useful for microencapsulation with very high efficiency of active substances of varied nature into size-tunable particles for a wide range of applications in an affordable and cost-effective manner.