Published in

Elsevier, Chemosphere, 7(87), p. 742-749

DOI: 10.1016/j.chemosphere.2011.12.069

Links

Tools

Export citation

Search in Google Scholar

Discrepancies in the acute versus chronic toxicity of compounds with a designated narcotic mechanism

Journal article published in 2012 by Nathalie Dom, Melissa Penninck, Dries Knapen ORCID, Ronny Blust
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, it was illustrated that even for certain simple organic compounds with a designated mode of action (MOA) (i.e. narcotic toxicity) unexpected differences in acute and chronic toxicity can be observed. In a first part of the study, species sensitivity distributions (SSDs) based on either acute or chronic toxicity data of three narcotic test compounds (methanol, ethanol and 2-propanol) were constructed. The results of the acute SSDs were as expected for narcotic compounds: rather similar sensitivity and small differences in toxicity were observed among different species. On the contrary, the chronic SSDs of methanol and ethanol indicated larger interspecies variation in sensitivity. Furthermore, the chronic toxicity trend (ethanol > methanol > 2-propanol) was unexpectedly different from the acute toxicity trend (2-propanol > ethanol > methanol) and acute versus chronic extrapolation could not be successfully described for methanol and ethanol using an ACR of 10 (as suggested for narcotic compounds). In contrast to the interspecies approach in the first part of this study, the second part of the study was focused on the assessment of acute and chronic toxicity of the three test compounds in Daphnia magna, which was identified as one of the most sensitive organisms to methanol and ethanol. Here, the differences in acute and chronic toxicity trend were in accordance to the results of the SSDs. The enhancement of membrane penetration due to the small molecular size of methanol and ethanol, in combination with the higher toxicity of their respective biotransformation products were suggested as potential causes of the increased chronic toxicity. Furthermore, it was stressed that larger awareness of these irregularities in acute to chronic extrapolations of narcotic compounds is required and should receive additional attention in further environmental risk assessment procedure.