Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, NeuroImage, 3(44), p. 653-660

DOI: 10.1016/j.neuroimage.2008.09.027

Links

Tools

Export citation

Search in Google Scholar

Differentiation between Glioblastomas and Solitary Brain Metastases Using Diffusion Tensor Imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The purpose of this study is to determine whether diffusion tensor imaging (DTI) metrics including tensor shape measures such as linear and planar anisotropy coefficients (CL and CP) can help differentiate glioblastomas from solitary brain metastases. Sixty-three patients with histopathologic diagnosis of glioblastomas (22 men, 16 women, mean age 58.4 years) and brain metastases (13 men, 12 women, mean age 56.3 years) were included in this study. Contrast-enhanced T1-weighted, fluid-attenuated inversion recovery (FLAIR) images, fractional anisotropy (FA), apparent diffusion coefficient (ADC), CL and CP maps were co-registered and each lesion was semi-automatically subdivided into four regions: central, enhancing, immediate peritumoral and distant peritumoral. DTI metrics as well as the normalized signal intensity from the contrast-enhanced T1-weighted images were measured from each region. Univariate and multivariate logistic regression analyses were employed to determine the best model for classification. The results demonstrated that FA, CL and CP from glioblastomas were significantly higher than those of brain metastases from all segmented regions (p<0.05), and the differences from the enhancing regions were most significant (p<0.001). FA and CL from the enhancing region had the highest prediction accuracy when used alone with an area under the curve of 0.90. The best logistic regression model included three parameters (ADC, FA and CP) from the enhancing part, resulting in 92% sensitivity, 100% specificity and area under the curve of 0.98. We conclude that DTI metrics, used individually or combined, have a potential as a non-invasive measure to differentiate glioblastomas from metastases.