Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Neglected Tropical Diseases, 3(3), p. e399, 2009

DOI: 10.1371/journal.pntd.0000399

Links

Tools

Export citation

Search in Google Scholar

Necator americanus Infection: A Possible Cause of Altered Dendritic Cell Differentiation and Eosinophil Profile in Chronically Infected Individuals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Hookworms survive for several years in the host lumen, inducing a robust but ineffective immune response. While the role of the adaptive response in human helminth infection has been well investigated, the role of the innate immune responses remains to be elucidated. We report on the development of dendritic cells (DCs) and the role of eosinophils during human hookworm infection. DCs from hookworm-infected individuals did not mature in the same manner as DCs from non-infected volunteers. Additionally, hookworm-infected individuals have lower expression of costimulatory (CD86) and antigen presenting molecules (CD1a, HLA-ABC, HLA-DR), which was coincident with a reduced ability of the DCs to induce cell proliferation. We also showed that this alternative DC differentiation is partially induced by excreted-secreted hookworm products. Conversely, eosinophils from the same individuals showed a highly activated status, with an upregulation of major cell surface markers. Moreover, eosinophils from hookworm-infected individuals induced a significant cell proliferation to crude antigen extracts compared to non-infected individuals. We show that, while hookworm infection modulates the development of DCs, the major cell surface markers of eosinophils are upregulated. Our data suggest that hookworm infection may alter the host's innate immune response, resulting in parasite-impaired DCs and activated, antigen presenting eosinophils.