Published in

Proceedings of the 26th International Conference on Scientific and Statistical Database Management - SSDBM '14

DOI: 10.1145/2618243.2618287

Links

Tools

Export citation

Search in Google Scholar

DistillFlow: removing redundancy in scientific workflows

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Scientific workflows management systems are increasingly used by scientists to specify complex data processing pipelines. Workflows are represented using a graph structure, where nodes represent tasks and links represent the dataflow. However, the complexity of workflow structures is increasing over time, reducing the rate of scientific workflows reuse. Here, we introduce DistillFlow, a tool based on effective methods for workflow design, with a focus on the Taverna model. DistillFlow is able to detect "anti-patterns" in the structure of workflows (idiomatic forms that lead to over-complicated design) and replace them with different patterns to reduce the workflow's overall structural complexity. Rewriting workflows in this way is beneficial both in terms of user experience and workflow maintenance.