Published in

Society for Industrial and Applied Mathematics, SIAM Review, 1(54), p. 52-118, 2012

DOI: 10.1137/080731785

Links

Tools

Export citation

Search in Google Scholar

Modeling growth in biological materials

Journal article published in 2012 by Gareth Wyn Jones, S. Jonathan Chapman ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The biomechanical modeling of growing tissues has recently become an area of intense interest. In particular, the interplay between growth patterns and mechanical stress is of great importance, with possible applications to arterial mechanics, embryo morphogenesis, tumor development, and bone remodeling. This review aims to give an overview of the theories that have been used to model these phenomena, categorized according to whether the tissue is considered as a continuum object or a collection of cells. Among the continuum models discussed is the deformation gradient decomposition method, which allows a residual stress field to develop from an incompatible growth field. The cell-based models are further subdivided into cellular automata, center-dynamics, and vertex-dynamics models. Of these the second two are considered in more detail, especially with regard to their treatment of cell–cell interactions and cell division. The review concludes by assessing the prospects for reconciliation between these two fundamentally different approaches to tissue growth, and by identifying possible avenues for further research.