Published in

Springer, Intensive Care Medicine, 2(28), p. 196-203, 2002

DOI: 10.1007/s00134-001-1177-2

Links

Tools

Export citation

Search in Google Scholar

Equal increases in respiratory system elastance reflect similar lung damage in experimental ventilator-induced lung injury

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective: We hypothesized that a 50% increase in respiratory system elastance (Ers) would indicate similar degree of lung damage (equi-damage, ED), independently of ventilation strategy. Design and setting: A prospective, randomized animal laboratory investigation at a university hospital laboratory. Subjects: 35 anesthetized, paralyzed, mechanically ventilated male Sprague-Dawley rats. Interventions: Each rat was ventilated with a different combination of tidal volume, positive end-expiratory pressure, and inspired fraction of oxygen. Ers was determined throughout the experiment; the studies were interrupted when Ers reached 150% (ED) of its baseline value, or after 5 h. Measurements and results. Lung wet to dry weight ratio (W/D) was assessed. Morphological damage of the lung was scored on a grading of perivascular edema, hemorrhage, and breaks in the alveolar septa to obtain a total injury score. Twenty-four rats achieved an Ers of 150%: nine within 1 h (class 1), nine in 1-2 h (class 2), and six in 2-5 h (class 3). Eleven rats did not reach the target 50% increase in Ers (class 4). W/D was higher in rats that reached the target than in those that did not. W/D did not differ among rats that reached ED. Similarly, the total injury score did not differ among classes 1-3 but was higher than class 4. Conclusions: In the setting of VILI a 50% increase in Ers corresponds to an equal level of lung damage, irrespective of ventilatory setting and time of ventilation.