Dissemin is shutting down on January 1st, 2025

Published in

American Society for Microbiology, Infection and Immunity, 10(74), p. 5848-5859, 2006

DOI: 10.1128/iai.00755-06

Links

Tools

Export citation

Search in Google Scholar

Effects of Temperature on Gene Expression Patterns in Leptospira interrogans Serovar Lai as Assessed by Whole-Genome Microarrays†

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.