Published in

American Chemical Society, Journal of Physical Chemistry C, 46(118), p. 26427-26439, 2014

DOI: 10.1021/jp5049698

Links

Tools

Export citation

Search in Google Scholar

Electronic structure and charge transport properties of a series of 3,6-(diphenyl)-s-tetrazine derivatives : are they suitable candidates for molecular electronics?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Optoelectronic and charge-transport related properties of a series of 3,6-diphenyl-s-tetrazine derivatives, including F, Cl, Br, and CN substituents, have been analyzed. The molecular structure and electronic properties of the new fluorine-containing derivative, bis(3,6-difluorophenyl)-s-tetrazine, were explored by spectroscopic, electrochemical, and theoretical methods. The effects of the substituent on the pristine compound have been assessed from a theoretical perspective, showing that the fluorinated and brominated derivatives have the highest predicted electron mobilities, whereas the cyano derivative is foreseen to undergo the most efficient electron injection process.