Links

Tools

Export citation

Search in Google Scholar

Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In the striatum, dopamine D(1) and adenosine A(2A) receptors stimulate the production of cAMP, which is involved in neuromodulation and long-lasting changes in gene expression and synaptic function. Positive coupling of receptors to adenylyl cyclase can be mediated through the ubiquitous GTP-binding protein Galpha(S) subunit or through the olfactory isoform, Galpha(olf), which predominates in the striatum. In this study, using double in situ hybridization, we show that virtually all striatal efferent neurons, identified by the expression of preproenkephalin A, substance P, or D(1) receptor mRNA, contained high amounts of Galpha(olf) mRNA and undetectable levels of Galpha(s) mRNA. In contrast, the large cholinergic interneurons contained both Galpha(olf) and Galpha(s) transcripts. To assess the functional relationship between dopamine or adenosine receptors and G-proteins, we examined G-protein levels in the striatum of D(1) and A(2A) receptor knock-out mice. A selective increase in Galpha(olf) protein was observed in these animals, without change in mRNA levels. Conversely, Galpha(olf) levels were decreased in animals lacking a functional dopamine transporter. These results indicate that Galpha(olf) protein levels are regulated through D(1) and A(2A) receptor usage. To determine the functional consequences of changes in Galpha(olf) levels, we used heterozygous Galpha(olf) knock-out mice, which possess half of the normal Galpha(olf) levels. In these animals, the locomotor effects of amphetamine and caffeine, two psychostimulant drugs that affect dopamine and adenosine signaling, respectively, were markedly reduced. Together, these results identify Galpha(olf) as a critical and regulated component of both dopamine and adenosine signaling. ; Journal Article ; Research Support, Non-U.S. Gov't ; info:eu-repo/semantics/published