Published in

American Chemical Society, Journal of Organic Chemistry, 14(73), p. 5279-5286, 2008

DOI: 10.1021/jo800375u

Links

Tools

Export citation

Search in Google Scholar

Biosynthetic Origin of BE-10988 in Streptomyces sp. BA10988

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The biosynthetic origin of the tumor-inhibitory derivative, BE-10988, was studied in Streptomyces sp . BA10988 by retrobiosynthetic NMR analysis using [U-(13)C6]glucose as a precursor. The isotopologue compositions of the indole moieties of BE-10988 and tryptophan were virtually identical. This indicates that tryptophan or a closely related metabolite served as a biosynthetic precursor of BE-10988 in analogy to the biosynthetic pathway of camalexin, a structurally related phytoalexin in Arabidopsis thaliana. Labeling experiments with [U-(13)C8(15)N]indole, L-[ring-(2)H5]tryptophan, or L-[U-(13)C3(15)N]cysteine confirmed this hypothesis. However, transfer of the label from [ring-(2)H5]indole pyruvic acid, but not from the known camalexin precursor, [ring-(2)H5]indole-3-acetaldoxime, showed that plants and bacteria have evolved independent mechanisms of tryptophan modification in the biosynthesis of thiazolylindole derivatives.