Published in

Cell Press, Chemistry and Biology, 12(19), p. 1579-1588, 2012

DOI: 10.1016/j.chembiol.2012.10.007

Links

Tools

Export citation

Search in Google Scholar

Enhancement of Anti-HIV-1 Activity by Hot Spot Evolution of RANTES-Derived Peptides.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CCR5, the major HIV-1 coreceptor, is a primary target for HIV-1 entry inhibition strategies. CCL5/RANTES, a natural CCR5 ligand, is one of the most potent HIV-1 entry inhibitors and, therefore, an ideal candidate to derive HIV-1 blockers. Peptides spanning the RANTES N-loop/β1-strand region act as specific CCR5 antagonists, with their hydrophobic N- and C termini playing a crucial role in virus blockade. Here, hydrophobic surfaces were enhanced by tryptophan substitution of aromatic residues, highlighting position 27 as a critical hot spot for HIV-1 blockade. In a further molecular evolution step, C-terminal engraftment of RANTES 40' loop produced a peptide with the highest solubility and anti-HIV-1 activity. These modified peptides represent leads for the development of effective HIV-1 inhibitors and microbicides.