Published in

Wiley, Progress in Photovoltaics, 11(23), p. 1630-1641, 2015

DOI: 10.1002/pip.2601

Links

Tools

Export citation

Search in Google Scholar

Highly conductive ZnO films with high near infrared transparency

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n-type window of low band gap solar cells. We demonstrate that low-voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non-reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free-carrier concentration and higher free-carrier mobility than Al-doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high-temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4-based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378 mV, and a power conversion efficiency of 8.4 %.