Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Journal of Geophysical Research, (113), 2008

DOI: 10.1029/2008je003081

Links

Tools

Export citation

Search in Google Scholar

Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Images obtained by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M channel instrument onboard Venus Express have been used to retrieve maps and apparent motions of the O[SUB]2[/SUB] ([SUP]1[/SUP]Delta) infrared nightglow on Venus at 1.27 mum. The nightglow distribution is highly inhomogeneous with the regions of brightest emission generally located at low latitudes near the midnight meridian. Unexpectedly some orbits show also intense airglow activity over the south polar region. The spatially resolved airglow is spectacularly variable not only in its morphology and intensity but also in the apparent motions of the airglow small- and large-scale structures. Visual tracking of the bright features allowed to obtain mean zonal and meridional motions related to the subsolar to antisolar circulation. The zonal velocity is dominated by an intense prograde jet (contrary to the retrograde planetary rotation) from dawn to midnight extending up to 22 hours in local time with lower velocities and reversed sign from dusk. Typical zonal velocities range between +60 (prograde) to -50 (retrograde) m/s, whereas most meridional velocities range from -20 (poleward) to +100 m/s (equatorward) with an average meridional circulation of +20 m/s toward low latitudes. The brightest small-scale (~100 km) features appear correlated with locations of apparent convergence which may be a signature of compression and downwelling, whereas this is not evident for the large-scale structures suggesting slow subsidence over large areas mixed with horizontal motions. We argue that part of the tracked motions are representative of real motions at the mesosphere over an altitude range of 95-107 km. ; Peer reviewed