Published in

Oxford University Press (OUP), Human Molecular Genetics, 10(20), p. 2058-2070

DOI: 10.1093/hmg/ddr090

Links

Tools

Export citation

Search in Google Scholar

Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Budding uninhibited by benzimidazole-related 1 (BUBR1) is a central molecule of the spindle assembly checkpoint. Germline mutations in the budding uninhibited by benzimidazoles 1 homolog beta gene encoding BUBR1 cause premature chromatid separation (mosaic variegated aneuploidy) [PCS (MVA)] syndrome, which is characterized by constitutional aneuploidy and a high risk of childhood cancer. Patients with the syndrome often develop Dandy–Walker complex and polycystic kidneys; implying a critical role of BUBR1 in morphogenesis. However, little is known about the function of BUBR1 other than mitotic control. Here, we report that BUBR1 is essential for the primary cilium formation, and that the PCS (MVA) syndrome is thus a novel ciliopathy. Morpholino knockdown of bubr1 in medaka fish also caused ciliary dysfunction characterized by defects in cerebellar development and perturbed left–right asymmetry of the embryo. Biochemical analyses demonstrated that BUBR1 is required for ubiquitin-mediated proteasomal degradation of cell division cycle protein 20 in the G0 phase and maintains anaphase-promoting complex/cyclosome-CDC20 homolog 1 activity that regulates the optimal level of dishevelled for ciliogenesis.