Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(107), p. 13046-13050, 2010

DOI: 10.1073/pnas.1002396107

Links

Tools

Export citation

Search in Google Scholar

Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis

Journal article published in 2010 by Felix Meissner, Kaaweh Molawi, Arturo Zychlinsky
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ALS is a fatal motor neuron disease of adult onset. Neuroinflammation contributes to ALS disease progression; however, the inflammatory trigger remains unclear. We report that ALS-linked mutant superoxide dismutase 1 (SOD1) activates caspase-1 and IL-1beta in microglia. Cytoplasmic accumulation of mutant SOD1 was sensed by an ASC containing inflammasome and antagonized by autophagy, limiting caspase-1-mediated inflammation. Notably, mutant SOD1 induced IL-1beta correlated with amyloid-like misfolding and was independent of dismutase activity. Deficiency in caspase-1 or IL-1beta or treatment with recombinant IL-1 receptor antagonist (IL-1RA) extended the lifespan of G93A-SOD1 transgenic mice and attenuated inflammatory pathology. These findings identify microglial IL-1beta as a causative event of neuroinflammation and suggest IL-1 as a potential therapeutic target in ALS.