Full text: Download
In spite of the recent success in crystallizing several G-protein-coupled receptors (GPCRs), a comprehensive biophysical characterization of these molecules under physiological conditions also requires the study of the molecular dynamics of these proteins. The molecular mobility of the human neuropeptide Y receptor type 2 reconstituted into dimyristoylphosphatidylcholine (DMPC) membranes was investigated by means of solid-state NMR spectroscopy. Static (15) N NMR spectra show that the receptor performs axially symmetric motions in the membrane, and several residues undergo large amplitude fluctuations. This was confirmed by quantitative measurements of the motional (1) H,(13) C order parameter of the CH, CH2 , and CH3 groups. In directly polarized (13) C NMR experiments, these order parameters showed astonishingly low values of SCH =0.55, S CH 2=0.33, and S CH 3=0.17, which corresponds to segmental amplitudes of approximately 50° in the backbone and approximately 50-60° in the side chain. At physiological temperature, (2) H NMR spectra of the deuterated receptor showed a narrow component that is indicative of molecular order parameters of S≤0.3 superimposed with a very broad spectrum that could stem from the transmembrane α-helices. These results suggest that the crystal structures of GPCRs only represent a static snapshot of these highly mobile molecules, which undergo significant structural fluctuations with relatively large amplitudes in a liquid-crystalline membrane at physiological temperature.