Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 17(20), p. 4986-4992, 2014

DOI: 10.1002/chem.201304928

Links

Tools

Export citation

Search in Google Scholar

The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy

Journal article published in 2014 by Peter Schmidt, Lars Thomas, Paul Müller, Holger A. Scheidt ORCID, Daniel Huster
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In spite of the recent success in crystallizing several G-protein-coupled receptors (GPCRs), a comprehensive biophysical characterization of these molecules under physiological conditions also requires the study of the molecular dynamics of these proteins. The molecular mobility of the human neuropeptide Y receptor type 2 reconstituted into dimyristoylphosphatidylcholine (DMPC) membranes was investigated by means of solid-state NMR spectroscopy. Static (15) N NMR spectra show that the receptor performs axially symmetric motions in the membrane, and several residues undergo large amplitude fluctuations. This was confirmed by quantitative measurements of the motional (1) H,(13) C order parameter of the CH, CH2 , and CH3 groups. In directly polarized (13) C NMR experiments, these order parameters showed astonishingly low values of SCH =0.55, S CH 2=0.33, and S CH 3=0.17, which corresponds to segmental amplitudes of approximately 50° in the backbone and approximately 50-60° in the side chain. At physiological temperature, (2) H NMR spectra of the deuterated receptor showed a narrow component that is indicative of molecular order parameters of S≤0.3 superimposed with a very broad spectrum that could stem from the transmembrane α-helices. These results suggest that the crystal structures of GPCRs only represent a static snapshot of these highly mobile molecules, which undergo significant structural fluctuations with relatively large amplitudes in a liquid-crystalline membrane at physiological temperature.