Published in

Wiley Open Access, Molecular Oncology, 5(8), p. 1026-1042, 2014

DOI: 10.1016/j.molonc.2014.04.002

Links

Tools

Export citation

Search in Google Scholar

Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The tumor suppressor p53 regulates the expression of genes involved in cell cycle progression, senescence and apoptosis. Here, we investigated the effect of single point mutations in the oligomerization domain (OD) on tetramerization, transcription, ubiquitylation and stability of p53. As predicted by docking and molecular dynamics simulations, p53 OD mutants show functional defects on transcription, Mdm2-dependent ubiquitylation and 26S proteasome-mediated degradation. However, mutants unable to form tetramers are well degraded by the 20S proteasome. Unexpectedly, despite the lower structural stability compared to WT p53, p53 OD mutants form heterotetramers with WT p53 when expressed transiently or stably in cells wild type or null for p53. In consequence, p53 OD mutants interfere with the capacity of WT p53 tetramers to be properly ubiquitylated and result in changes of p53-dependent protein expression patterns, including the pro-apoptotic proteins Bax and PUMA under basal and adriamycin-induced conditions. Importantly, the patient derived p53 OD mutant L330R (OD1) showed the more severe changes in p53-dependent gene expression. Thus, in addition to the well-known effects on p53 stability, ubiquitylation defects promote changes in p53-dependent gene expression with implications on some of its functions. © 2014 Federation of European Biochemical Societies.