Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Hepatology, 5(44), p. 1296-1307, 2006

DOI: 10.1002/hep.21367

Links

Tools

Export citation

Search in Google Scholar

Upregulation of the tumor suppressor gene menin in hepatocellular carcinomas and its significance in fibrogenesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The molecular mechanisms underlying the progression of cirrhosis toward hepatocellular carcinoma were investigated by a combination of DNA microarray analysis and literature data mining. By using a microarray screening of suppression subtractive hybridization cDNA libraries, we first analyzed genes differentially expressed in tumor and nontumor livers with cirrhosis from 15 patients with hepatocellular carcinomas. Seventy-four genes were similarly recovered in tumor (57.8% of differentially expressed genes) and adjacent nontumor tissues (64% of differentially expressed genes) compared with histologically normal livers. Gene ontology analyses revealed that downregulated genes (n = 35) were mostly associated with hepatic functions. Upregulated genes (n = 39) included both known genes associated with extracellular matrix remodeling, cell communication, metabolism, and post-transcriptional regulation gene (e.g., ZFP36L1), as well as the tumor suppressor gene menin (multiple endocrine neoplasia type 1; MEN1). MEN1 was further identified as an important node of a regulatory network graph that integrated array data with array-independent literature mining. Upregulation of MEN1 in tumor was confirmed in an independent set of samples and associated with tumor size (P = .016). In the underlying liver with cirrhosis, increased steady-state MEN1 mRNA levels were correlated with those of collagen alpha2(I) mRNA (P < .01). In addition, MEN1 expression was associated with hepatic stellate cell activation during fibrogenesis and involved in transforming growth factor beta (TGF-beta)-dependent collagen alpha2(I) regulation. In conclusion, menin is a key regulator of gene networks that are activated in fibrogenesis associated with hepatocellular carcinoma through the modulation of TGF-beta response.