Published in

American Institute of Physics, Journal of Applied Physics, 1(79), p. 204

DOI: 10.1063/1.360932

Links

Tools

Export citation

Search in Google Scholar

Transport properties of nitrogen dopedp‐gallium selenide single crystals

Journal article published in 1996 by J. F. Sánchez‐Royo ORCID, A. Segura, A. Chevy, L. Roa
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Nitrogen doped gallium selenide single crystals are studied through Hall effect and photoluminescence measurements in the temperature ranges from 150 to 700 K and from 30 to 45 K, respectively. The doping effect of nitrogen is established and room temperature resistivities as low as 20 Ω cm are measured. The temperature dependence of the hole concentration can be explained through a single acceptor‐single donor model, the acceptor ionization energy being 210 meV, with a very low compensation rate. The high quality of nitrogen doped GaSe single crystals is confirmed by photoluminescence spectra exhibiting only exciton related peaks. Two phonon scattering mechanisms must be considered in order to give quantitative account of the temperature dependence of the hole mobility: scattering by 16.7 meV A 1 homopolar optical phonons with a hole‐phonon coupling constant g2=0.115 and scattering by 31.5 meV LO polar phonon with a hole Fröhlich constant α h⊥ =0.741. © 1996 American Institute of Physics.