Published in

Taylor and Francis Group, Systems Biomedicine, 4(1), p. 240-246

DOI: 10.4161/sysb.25271

Links

Tools

Export citation

Search in Google Scholar

Learning diagnostic signatures from microarray data using L1-regularized logistic regression

Journal article published in 2013 by Preetam Nandy, Michael Unger, Christoph Zechner, Kushal K. Dey, Heinz Koeppl
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Making reliable diagnoses and predictions based on high-throughput transcriptional data has attracted immense attention in the past few years. While experimental gene profiling techniques—such as microarray platforms—are advancing rapidly, there is an increasing demand of computational methods being able to efficiently handle such data. In this work we propose a computational workflow for extracting diagnostic gene signatures from high-throughput transcriptional profiling data. In particular, our research was performed within the scope of the first IMPROVER challenge. The goal of that challenge was to extract and verify diagnostic signatures based on microarray gene expression data in four different disease areas: psoriasis, multiple sclerosis, chronic obstructive pulmonary disease and lung cancer. Each of the different disease areas is handled using the same three-stage algorithm. First, the data are normalized based on a multi-array average (RMA) normalization procedure to account for variability among different samples and data sets. Due to the vast dimensionality of the profiling data, we subsequently perform a feature pre-selection using a Wilcoxon’s rank sum statistic. The remaining features are then used to train an L1-regularized logistic regression model which acts as our primary classifier. Using the four different data sets, we analyze the proposed method and demonstrate its use in extracting diagnostic signatures from microarray gene expression data.