Published in

Elsevier, Algal Research, (10), p. 1-7, 2015

DOI: 10.1016/j.algal.2015.04.006

Links

Tools

Export citation

Search in Google Scholar

Chlorella vulgaris biomass enriched by biosorption of polyphenols

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cell walls of microalgae are variable and contain non-specific domains where different molecules can bind. The enrichment of microalgal biomass with nutrients through adsorption can be an interesting process for the food and feed industry. In this study, naturally occurring polyphenols ((+)-catechin, (−)-epicatechin, quercetin, rutin and xanthohumol) were adsorbed onto nonliving cells of freshwater microalgae Chlorella vulgaris. The essential adsorption parameters such as biomass dose and contact time were examined and the adsorption was quantified with Langmuir, Sips and Dubinin–Radushkevich adsorption isotherms. The evaluation of isotherms proved the highest affinity towards Chlorella vulgaris biomass for xanthohumol and quercetin. The biosorption mechanism of Chlorella vulgaris biomass was well described by a pseudo second order kinetic model, with a high regression coefficient. The polyphenol-enriched microalgal biomass was also evaluated for its antioxidant activity. The highest antioxidant activity was detected in the case of biomass enriched with quercetin (77.5% of decolorized DPPH).