Published in

Springer, Journal of Materials Science: Materials in Medicine, 11(24), p. 2651-2657, 2013

DOI: 10.1007/s10856-013-5048-5

Links

Tools

Export citation

Search in Google Scholar

Promising perspectives towards regrowing a human arm

Journal article published in 2013 by Malgorzata Lewandowska-Szumiel, Ilona Kalaszczynska ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite the great enthusiasm about tissue engineering during the 1980s and the many significant basic observations made since then, the clinical application of tissue-engineered products has been limited. However, the prospect of creating new human tissues and organs is still exciting and continues to be a significant challenge for scientists and clinicians. A human arm is an extremely complicated biological construction. Considering regrowing a human arm requires asking about the current state-of-the-art of tissue engineering and the real capabilities that it may offer within a realistic time horizon. This work briefly addresses the state-of-the-art in the fields of cells and scaffolds that have high regenerative potential. Additional tools that are required to reconstruct more complex parts of the body, such as a human arm, seem achievable with the already available more sophisticated culture systems including three-dimensional organization, dynamic conditions and co-cultures. Finally, we present results on cell differentiation and cell and tissue maturation in culture when cells are exposed to mechanical forces. We postulate that in the foreseeable future even such complicated structures such as a human arm will be regrown in full in vitro under the conditions of a mechanically controlled co-culture system.