Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 40(53), p. 15436-15446, 2014

DOI: 10.1021/ie5000888

Links

Tools

Export citation

Search in Google Scholar

Combined Comprehensive Two-Dimensional Gas Chromatography Analysis of Polyaromatic Hydrocarbons/Polyaromatic Sulfur-Containing Hydrocarbons (PAH/PASH) in Complex Matrices

Journal article published in 2014 by Thomas Dijkmans, Kevin M. Van Geem ORCID, Marko R. Djokic, Guy B. Marin
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new gas chromatographic method has been developed that is able to quantify polycyclic aromatic hydrocarbons (PAH) and polycyclic aromatic sulfur-containing hydrocarbons (PASH) up to four rings. The method combines the power of both flame ionization detection (FID) and sulfur chemiluminescence detection (SCD) in series on a single comprehensive two-dimensional gas chromatography (GC x GC) system and provides mass fractions of compounds separated by carbon number n (CnHxSy) and class. In addition to PAH and PASH separation, the method is extended toward nonaromatic and monoaromatic (sulfur-containing) compounds (paraffins, naphthenes, monoaromatics, thiols, sulfides, disulfides, and thiophenes). The 95% confidence interval is doubled when a single injection technique is used instead of a more-accurate double injection technique. A flexible correction procedure that combines the advantages of the two-dimensional separation of GC x GC and its ability to easily define overlapping groups between the FID and the SCD chromatograms is applied. The method is validated using theoretical reference mixtures and is applied on three commercial gas oils with sulfur content from 0.16 wt% up to 1.34 wt%. The repeatability is good, with an average of 3.4%, which is in the same range as the much more expensive Fourier transform ion cyclotron resonancemass spectroscopy (FTICR-MS) technique.