Published in

Elsevier, Immunity, 6(30), p. 888-898, 2009

DOI: 10.1016/j.immuni.2009.03.022

Links

Tools

Export citation

Search in Google Scholar

Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating alpha galactosylceramide (alphaGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for alphaGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokine-biasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing alphaGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and anti-inflammatory activities of NKT cells.